ChatTogetherAI
This will help you getting started with ChatTogetherAI
chat
models. For detailed documentation of all
ChatTogetherAI
features and configurations head to the API
reference.
Overview
Integration details
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatTogetherAI | @langchain/community | ❌ | ✅ | ✅ |
Model features
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Setup
To access ChatTogetherAI
models you’ll need to create a Together
account, get an API key here, and install
the @langchain/community
integration package.
Credentials
Head to api.together.ai to sign up to
TogetherAI and generate an API key. Once you’ve done this set the
TOGETHER_AI_API_KEY
environment variable:
export TOGETHER_AI_API_KEY="your-api-key"
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"
Installation
The LangChain ChatTogetherAI integration lives in the
@langchain/community
package:
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
Instantiation
Now we can instantiate our model object and generate chat completions:
import { ChatTogetherAI } from "@langchain/community/chat_models/togetherai";
const llm = new ChatTogetherAI({
model: "mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature: 0,
maxTokens: undefined,
timeout: undefined,
maxRetries: 2,
// other params...
});
Invocation
const aiMsg = await llm.invoke([
[
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
],
["human", "I love programming."],
]);
aiMsg;
AIMessage {
"id": "chatcmpl-9rT9qEDPZ6iLCk6jt3XTzVDDH6pcI",
"content": "J'adore la programmation.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 8,
"promptTokens": 31,
"totalTokens": 39
},
"finish_reason": "stop"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 31,
"output_tokens": 8,
"total_tokens": 39
}
}
console.log(aiMsg.content);
J'adore la programmation.
Chaining
We can chain our model with a prompt template like so:
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"id": "chatcmpl-9rT9wolZWfJ3xovORxnkdf1rcPbbY",
"content": "Ich liebe das Programmieren.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 6,
"promptTokens": 26,
"totalTokens": 32
},
"finish_reason": "stop"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 26,
"output_tokens": 6,
"total_tokens": 32
}
}
Tool calling & JSON mode
The TogetherAI chat supports JSON mode and calling tools.
Tool calling
import { ChatTogetherAI } from "@langchain/community/chat_models/togetherai";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { convertToOpenAITool } from "@langchain/core/utils/function_calling";
import { Calculator } from "@langchain/community/tools/calculator";
// Use a pre-built tool
const calculatorTool = convertToOpenAITool(new Calculator());
const modelWithCalculator = new ChatTogetherAI({
temperature: 0,
// This is the default env variable name it will look for if none is passed.
apiKey: process.env.TOGETHER_AI_API_KEY,
// Together JSON mode/tool calling only supports a select number of models
model: "mistralai/Mixtral-8x7B-Instruct-v0.1",
}).bind({
// Bind the tool to the model.
tools: [calculatorTool],
tool_choice: calculatorTool, // Specify what tool the model should use
});
const promptForTools = ChatPromptTemplate.fromMessages([
["system", "You are a super not-so-smart mathmatician."],
["human", "Help me out, how can I add {math}?"],
]);
// Use LCEL to chain the prompt to the model.
const responseWithTool = await promptForTools.pipe(modelWithCalculator).invoke({
math: "2 plus 3",
});
console.dir(responseWithTool.tool_calls, { depth: null });
[
{
name: 'calculator',
args: { input: '2 + 3' },
type: 'tool_call',
id: 'call_nhtnmganqJPAG9I1cN8ULI9R'
}
]
Behind the scenes, TogetherAI uses the OpenAI SDK and OpenAI compatible API, with some caveats:
- Certain properties are not supported by the TogetherAI API, see here.
API reference
For detailed documentation of all ChatTogetherAI features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_community_chat_models_togetherai.ChatTogetherAI.html